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4 Magnetostatics

Charges give rise to electric fields. Current give rise to magnetic fields. In this section, we will study the
magnetic fields induced by steady currents. This means that we are again looking for time independent
solutions to the Maxwell equations. We will also restrict to situations in which the charge density
vanishes, so p = 0. We can then set E = 0 and focus our attention only on the magnetic field. We're

left with two Maxwell equations to solve:
V x B = pJ (4.1)

and

V-B=0 (4.2)
If you fix the current density J , these equations have a unique solution. Our goal in this section is to
find it.

4.1 Steady current

Before we solve (4.1) and (4.2) let’s pause to think about the kind of currents that we’re considering in
this section. Because p = 0 , there can’t be any net charge. But, of course, we still want charge to be
moving! This means that we necessarily have both positive and negative charges which balance out at
all points in space. Nonetheless, these charges can move so there is a current even though there is no

net charge transport.

This may sound artificial, but in fact it’s exactly what happens in a typical wire. In that case, there

is background of positive charge due to the lattice of ions in the metal.

Meanwhile, the electrons are free to move. But they all move together so that at each point we still
have p = 0. The continuity equation, which captures the conservation of electric charge, is
dp

i J = 4.
8t+VJ 0 (4.3)

Since the charge density is unchanging (and, indeed, vanishing), we have
V-J=0 (4.4)

Mathematically, this is just saying that if a current flows into some region of space, an equal current
must flow out to avoid the build up of charge. Note that this is consistent with (4.1) since, for any
vector field, V- (V x B) =0

4.2 Force on a moving charge

The most basic form of the magnetic force is the force on a charge ¢ moving with velocity v, exerted by
a magnetic field B, which is
F=¢gvxB (4.5)
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The SI unit of magnetic field is the tesla (T). One tesla is defined as one newton per ampere-meter. By
(4.5) the force on 1 C moving 1 m/s perpendicular to a field of 1 T is 1 N . A magnetic field of 1 T is a
rather strong field. The largest fields that can be produced by conventional electromagnets are about 2
T. For high-field research in laboratories, fields of 10 —12 T , produced with superconducting mag- nets,
are used. The record for steady-state fields is about 30 T . At the surface of the Earth the magnetic
field is about 0.5 x 107#T . Very large and very small fields are important in astronomy; e. g.10%T near
pulsars, and 1071°T in interstellar space in the galaxy.

The direction of the magnetic force on ¢ is sideways, i.e., perpendicular to v and to B, as shown in
Fig. 8.1 for a positive charge. Therefore, the magnetic force does no work on ¢ :

dW =F -dx=F -vdt =0 (4.6)

The magnetic force affects the direction of motion of ¢, but not its kinetic energy. Because the magnetic
force does no work, it is not possible to define a potential energy function for the magnetic force. The
magnetic force is velocity dependent, which is quite different from the other fundamental forces we

encounter in physics.

Figure 4.1: The magnetic force. The force on a moving charge is sideways, perpendicular to both v and
B. The figure shows F' and the circular trajectory for a positive charge in a uniform field.

Equation (4.5) may be taken as the definition of the magnetic field. From the measurement of the
force on a test charge ¢, e.g. by observing its deflection for a known velocity, the defined quantity B
could in principle be deduced from (4.5)

When both electric and magnetic field is present then the force equation is known as lorentz force
equation
F =¢4(E+v x B) (4.7)

4.2.1 Force on current carrying wire

A current-carrying wire in a magnetic field experiences a force, from the magnetic force on the individual

moving charges that make the current. Electric current is motion of charge, and (4.5) is the force on a
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moving charge. Suppose the current consists of particles with charge ¢ and linear density n; , moving
with mean velocity v . Then the net force dF on a small segment d¢ of the wire is

dF = (n1dl) qv x B (4.8)

because nydf is the number of moving charges in d¢. The current [ in the wire is gn v, and v is parallel

to dl, so the total force on the wire is

F = / Idl x B (4.9)

4.3 Electric current as a source of magnetic field

Where does a magnetic field come from? What is its source? The most familiar source is a permanent
magnet, i.e., a piece of magnetized iron or other ferromagnetic material. 'But at a more basic level
the source of B is to be found in electric current. We will study magnetic materials, and see that the
magnetic and field of a ferromagnet comes from properties of atomic electrons - their spin and orbital
motion - which, although not classical currents, do involve dynamics of charged particles. However, now

we are concerned with B from macroscopic steady currents.

4.3.1 Biot-Savart Law

The magnetic field of a steady line current is given by the Biot-Savart law: The field dB at a point P,
due to an infinitesimal current element Idl at a point P’. Figure below shows the geometry. For this

elemental case the Biot-Savart law is

T
Biot-Savart law g/

dB

e}

Figure 4.2: Elemental form of the Biot-Savart law. Id/¢ is the source of magnetic field, and dB is the
resulting field at P .

po Idl x 1
dB = —
A7 r?

Here r is the distance between P’ (the source point) and P (the field point), ¥ is the unit vector in

(4.10)

the direction from P’ to P, and r = rr. Note that the Biot-Savart law is an inverse-square law, like

Coulomb’s law, but the direction of the magnetic field is azimuthal, around the axis of Id¢.
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Do few examples from Griffiths.

4.3.2 Ampere’s Law

The integral of the current density over the surface S is the same thing as the total current I that passes
through S. Ampere’s law in integral form then reads

f B - dr = pol (4.11)
c

For the problems where cylindrical symmetry is there, it is easy to apply Ampere’s law to calculate
Magnetic field.

Consider an infinite, straight wire carrying current 1. We'll take it to point in the z direction. The
symmetry of the problem is jumping up and down telling us that we need to use cylindrical polar
coordinates, (r,p, z), where r = /22 + y? is the radial distance away from the wire.

We take the open surface S to lie in the z — y plane, centered on the wire. For the line integral
in (4.11) to give something that doesn’t vanish, it’s clear that the magnetic field has to have some

component that lies along the circumference of the disc.

T
\\_//

TI

- = 1.,

Figure 4.3: Magnetic field of long straight wire

But, by the symmetry of the problem, that’s actually the only component that B can have: it must
be of the form B = B(r)¢ . (If this was a bit too quick, we’ll derive this more carefully below). Any
magnetic field of this form automatically satisfies the second Maxwell equation V- B = 0. We need only

worry about Ampere’s law which tells us

27
j{ B-dr = B(r) / rde = 21rB(r) = pol
c

0
We see that the strength of the magnetic field is

I
B = Hol -

= 4.12
2rr ( )
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The magnetic field circles the wire using the “right-hand rule”: stick the thumb of your right hand in
the direction of the current and your fingers curl in the direction of the magnetic field.

4.4 Surface Currents and Discontinuities

Consider the flat plane lying at z = 0 with a surface current density that we’ll call K . Note that K is
the current per unit length, as opposed to J which is the current per unit area. You can think of the
surface current as a bunch of wires, all lying parallel to each other.

We'll take the current to lie in the x-direction: K = KX as shown below.

Figure 4.4: Surface Current

From our previous result, we know that the B field should curl around the current in the right-handed
sense. But, with an infinite number of wires, this can only mean that B is oriented along the y direction.
In fact, from the symmetry of the problem, it must look like

Figure 4.5: Magnetic field due to a Surface Current

with B pointing in the —y direction when z > 0 and in the +y direction when z < 0 we write
B = -B(2)y

with B(z) = —B(—z). We invoke Ampere’s law using the following open surface:
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Figure 4.6:

with length L in the y direction and extending to £z. We have
j{ B.dr = LB(z) — LB(—z) =2LB(z) = noKL
c

so we find that the magnetic field is constant above an infinite plane of surface current

_ o<

B(z) 5

z>0
This is rather similar to the case of the electric field in the presence of an infinite plane of surface charge.

The analogy with electrostatics continues. The magnetic field is not continuous across a plane of

surface current. We have

B(z—>0+) —B(z—)O_) = oKX
In fact, this is a general result that holds for any surface current K. We can prove this statement by
using the same curve that we used in the Figure above and shrinking it until it barely touches the surface

on both sides. If the normal to the surface is n and B. denotes the magnetic field on either side of the

surface, then
nx B[, —nx B|_ =K (4.13)

Meanwhile, the magnetic field normal to the surface is continuous. We can write the boundary

conditions as

B‘j,i)ove - Bé_elow (414)
and
Bixlbove - Bl|)|elow = ,U()K (415)

When we looked at electric fields, we saw that the normal component was discontinuous in the

presence of surface charge while the tangential component is continuous.

For magnetic fields, it’s the other way around: the tangential component is discontinuous in the

presence of surface currents.
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4.5 Magnetic Vector Potential

At this point it is useful to compare the principles of magnetostatics and electrostatics, given in the
table below.

Electrostatics Magnetostatics

V x B = pgJ V-E=)p/e
V-B=0 VxE=0

B curls around [ E diverges from ¢

Note this difference: The clectric field has scalar sources, but the magnetic field has vector sources.
Electric charge, i.e., a point source of E from which E diverges, is a common property of elementary

particles. Motion of charged particles-current-is the source of B, around which B curls.

Magnetic charge, i.e., a point source from which B diverges in the rest frame of the particle, apparently
does not exist in nature, or at least it has not been observed. Such a hypothetical charge is called a
magnetic monopole. Dirac showed that it is possible to construct a consistent quantum theory with both
electric charges and magnetic monopoles. However, the fundamental magnetic charge ¢ and electric
charge e would necessarily be quantized, and satisfy the relation eg = n/2, where n is an integer.
Many experimenters have searched for magnetic monopoles, but so far the results are negative. Some
speCUlative theories of high-energy physics, such as grand unified field theories, predict the existence

of very massive magnetic monopoles, too massive to be produced at current high-energy accelerators,

but which might have been produced in the big bang. Searching for magnetic monopoles continues

to be an interesting experimental challenge

If magnetic monopoles do not exist, then the equation V-B = 0 is a universal equation of magnetism.
Whether magnetic monopoles exist or not, the source of the magnetic fields we encounter in physics are
not point magnetic charges but rather currents of electric charge, corresponding to the source equation
V x B = pupd.

We found in electrostatics that it is useful to introduce a scalar potential V' (x) for the electrostatic
field, such that E = —VV. This guarantees that V x E = 0. In an analogous way we may introduce a
vector potential A(x) for the magnetic field, such that

B=VxA (4.16)

This guarantees that V-B =0

However, (4.16) does not uniquely determine A for a given magnetic field B : If f(x) is an arbitrary
scalar function, then A + Vf has the same curl as A (namely B) because V x Vf is identically 0.
Therefore we may impose a condition on A called a gauge condition, to remove this ambiguity. The
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Coulomb gauge condition, which we will use in magnetostatics, is

V-A=0 (4.17)

Taking (4.16) and (4.17) together is still not enough to make A(x) unique, because adding a constant
does not change either Vx A or V-A. But imposing an appropriate boundary condition, such as requiring

A — 0 at infinity, makes A unique.

Example: Consider the uniform field B = Byk . A vector potential function, satisfying (4.16) for
the uniform field and the Coulomb gauge condition (4.17) is

1 1 " .
Ax) = §B X X = §BO(—yi + zj)

An example of uniform B is the field inside a solenoid, so for B = Bok we may picture a long, tightly
and uniformly wound solenoid, whose axis is the z axis. Note for this case that A(x) is parallel to the
surface currents (azimuthal) and that A(x) curls around the B field.

The analytic expression of vector potential in vector notation is
J(x
Ax) =1 / oo LX) (4.18)
v

 dr |x — x|

4.6 Magnetic Dipole

Vector potential, while in the general coordinate as shown below figure, can be expanded as

dr’ =dl

Figure 4.7: Multipole expansion of vector potential

As in the multipole expansion of V, we call the first term (which goes like 1/r) the monopole term,
the second (which goes like 1/r?) dipole, the third quadrupole, and so on.

MOI 1 / 1 j{ / / 1 f "2 3 2 1 /
Ar)=——|- I'+— sadl + — —cos"av—— | dl'+--- 4.1
(r) o [r %d + 5 P ricos adl’ + = (") cos a—g dl' + (4.19)
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The magnetic monopole term is always zero
The dipole term
Agip(r) = % %r' cosadl’ = % j(£ (F-r')dl (4.20)
We define the dipole moment
mEI/dazla (4.21)

Then the vector potential for the the dipole term

Mo M X r
Adip(r) = - —3 (4.22)
Magnetic field of a magnetic dipole can be written as
1
Buip(r) = 22— [3(m - £)f ~ m] (4.23)

43

The magnetic field of a (perfect) dipole is easiest to calculate if we put m at the origin and let it

point in the z -direction see figure below.

e e s e e | . —— —— ——
<y

Figure 4.8: Calculation of magnetic field due to a magnetic dipole

According to Equation Ag;,(r) = Z—Om >2< ! the potential at point (7,6, ¢) is
T
fo msin @ -
Adip(r) = E 2 (424)
Hence the magnetic field
Bdip(r) =V X A = ZOm (2 cos 0r ~+ sin 99) (425)

s

Example: Find the magnetic dipole moment of the book type loop shown in Figure below. All

sides have length w, and it carries a current I.
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Figure 4.9:

Solution: This wire could be considered the superposition of two plane square loops The ”extra”
sides (AB) cancel when the two are put together, since the currents flow in opposite directions. The net
magnetic dipole moment is

m = [w’y + [’z
its magnitude is v2/w?, and it points along the 45° line z =y

Example: A circular loop of wire, with radius R, lies in the zy plane (centered at the origin) and

carries a current I running counterclockwise as viewed from the positive z axis.

(a) What is its magnetic dipole moment?

(b) What is the (approximate) magnetic field at points far from the origin?
NOI R?

(c) Show that, for points on the z axis, your answer is consistent with the exact field B = o @

when z > R.
Solution: (a) m = Ja = ITR?2
(b) B= %I’;—?z@ cos OF + sin 69)

(c) On the z axis, # = 0,7 = z.t = 2( for z > 0). So

~ T ,LL()[RQA
BB~ 53 V/
for 2 < 0,0 =7, t = =2, so the field is the same, with |z|® in place of 23

1
The original ans (B = %ﬁ) reduces (for z > R) to B ~ uolR?/2|z]>. So the ans are

same.

Example: (a) A disk of radius R, carrying a uniform surface charge o, is rotating at constant

angular velocity w . Find its magnetic dipole moment.

(b) A spherical shell of radius R, carrying a uniform surface charge o, is set spinning at angular
velocity w. Find the magnetic dipole moment of the spinning spherical shell.

Also find the magnetic vector potential of the spinning shell.
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Solution: (a) For a ring, m = I7r®. So the current due to a ring with radius extended to small
amount r — 1 + dr is (see figure (a) below )

[

"

€
\
&
E

Figure 4.10:

1 — ovdr = cwrdr
So the magnetic dipole moment

R
m = / mriowrdr = towR* /4
0

(b) See figure (b) above. The total charge on the shaded ring is dg = o(27 R sin ) Rdf. The time for
one revolution is dt = 27 /w .

So the current in the ring is I = % = gwR?sin0df. The area of the ring is 7(Rsin#)?, so the

magnetic moment of the ring is dim = (cwR? sin #df) m R? sin? #, and the total dipole moment of the shell
is .
m = 0w7rR4/ sin® 0d0 = (4/3)own R*
0

Hence

4
m = gawR‘li

Dipole term of the vector potential is

lom X T  pomsing -

Ay = =
aip () A 12 A r? ¢
In this problem
o 4m (Sinf » pgowR*sind 4
Ag,=—— =
e T yr 3 owht 2 3 72
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4.6.1 Torques and Forces on Magnetic Dipoles

Torque on a magnetic dipole of dipole moment m while placed in magnetic field B
N=mxB (4.26)

Force on a magnetic dipole is zero when placed in a uniform field. But when placed in a non-uniform
field then there is a net force acts
F=V(m-B) (4.27)

Potential energy of a magnetic dipole while placed in a magnetic field is

U=-m-B (4.28)

4.7 Electric Current

The conceptually simplest example of an electric current is the current in a thin conducting wire. In an
ideal one-dimensional wire the current [ is defined as the net charge passing a point P per unit time.

In a real wire I is defined as the charge per unit time passing through a cross section of the wire at P.

£4Q

I=
dt

(4.29)

The unit of current is the ampere (A), which is the basic electric unit in the SI system. If the wire
carries a current of 1 A at point P, then 1 C of net charge passes P each second.

If the current in a wire is due to charges ¢ moving with mean velocity v, and the charges have linear
density ny (= number of charge carriers per unit length) , then

I =qgnpv (4.30)

In n is the charge carrier density per unit volume and A is the surface area of the current carrying wire,

q is the amount of charge each particle carries, then the current is
I =gqnAv (4.31)

What is the current for an orbiting electron? Well the charge is e, velocity is v and the radius of

atom is taken to be R. Then the electron crosses a point once in one time period. So the current is

As T is 2rR/v , the current
(4.32)

You will need this expression many times
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4.7.1 Current Density

If the current in a volume of space is due to charges ¢ with volume number density n ( = number of

charge carriers per unit volume) moving with mean velocity v , then the current density is
J=qnv (4.33)

Note that the units of gnv are A/m? . Current density is the flux of electric charge. In general flux is
equal to density times velocity.

4.7.2 Conservation of Charge

The net charge of an isolated system is constant. But charge is not only conserved overall in a system,
it is also conserved point by point throughout the system. This local conservation of charge is described
mathematically by the continuity equation

dp
vy (4.34)

Here p(x,t) is the volume charge density (= charge per unit volume), and J(x, t) is the volume current
density (= current per unit area). Equation (4.34) is universally true, for arbitrary time dependence.

Integral form of the continuity equation,

f.] “dA = N pdx (4.35)
S dt %

states that the rate of charge passing outward through the closed surface S is equal to the rate of
decrease of charge in the enclosed volume V. Equation (4.34), or equivalently (4.35), is a basic equation

of electrodynamics, expressing local conservation of charge.

4.7.3 Ohm’s Law

How is the current related to the potential gradient in a conductor? If two terminal points on a conductor
are held at a constant potential difference V| e.g., by connecting them to the electrodes of a battery,
then in equilibrium a steady current flows through the conductor. Let I be the total current at either
point, i.c., the integrated flux [ J-dA through a surface inside the conductor surrounding the point. It

is found empirically that formany cases the current and potential difference are proportional,
V=IR (4.36)

The constant of proportionality R is called the resistance of the conductor. The SI unit of resistance
is the ohm (2), defined by 12 = 1V/A . The reciprocal 1/R is called the conductance, and its unit is
Q1 or siemens (S) . Ohm’s law holds to a very good approximation for many conductors. However, it

is not a universal principle, there are examples where it does not hold.
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The resistance R of a sample of matter is a function of the geometry (size and shape) of the sample,
and of the material composition. For example, the resistance of a uniform cylinder, of length L and
cross section A, is proportional to L and inversely proportional to A,

R=pL/A (4.37)

The parameter p (not to be confused with charge density p(x)! is an intrinsic property of the material

called the resistivity.

We may also write a local form of Ohm’s law, which is a more basic equation.

J(x) = ocE(x) (4.38)

Again, o is the conductivity.

Example Two long coaxial metal cylinders (radii a and b) are separated by material of conductivity
o as shown in figure below . If they are maintained at a potential difference V, what current flows from
one to the other, in a length L7

a )
I
1
___________________________ /
b
L
Figure 4.11:
Solution: The field between the cylinders is
A
E= S
27reoss

where A is the charge per unit length on the inner cylinder. The current is

J:/J-dazo—/E-dazﬂAL
€0

The integral is over any surface enclosing the inner cylinder. The potential difference between the

V:—/E~dl: A ln<é>
b 271'6() a

2moL

In(b/a)

cylinders is

So the resistance of the system is
~ In(b/a)

2moL
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5 Magnetic Field in a medium

Electric fields are created by charges; magnetic fields are created by currents. We learned in our first
course that the simplest way to characterise any localised current distribution is through a magnetic
dipole moment m. For example, a current [ moving in a planar loop of area A with normal n has

magnetic dipole moment,

m = /An
Magnetic vector potential and magnetic field due to a magentic dipole are
fom X T po (3(m-1)r —m
Ar)=— =B(r)=—(—-—F—" 5.1
(r) 4 13 (r) 4 < r3 (5.1)

Current loops, and their associated dipole moments, already exist inside materials. They arise

through two mechanisms:

e Electrons orbiting the nucleus carry angular momentum and act as magnetic dipole moments.

e Electrons carry an intrinsic spin. This is purely a quantum mechanical effect. This too contributes

to the magnetic dipole moment.

We define the magnetisation M to be the average magnetic dipole moment per unit volume.

In most (but not all) materials, if there is no applied magnetic field then the different atomic dipoles
all point in random directions. This means that, after averaging, (m) = 0 when B = (0. However, when
a magnetic field is applied, the dipoles line up. The magnetisation typically takes the form M oc B.
We're going to use a slightly strange notation for the proportionality constant. (It’s historical but, as
we'll see, it turns out to simplify a later equation)

R
o L Xm
where x,, is the magnetic susceptibility. The magnetic properties of materials fall into three different

(5.2)

categories. The first two are dictated by the sign of y,, :

e Diamagnetism: —1 < x,, < 0. The magnetisation of diamagnetic materials points in the opposite
direction to the applied magnetic field. Most metals are diamagnetic, including copper and gold.
Most non-metallic materials are also diamagnetic, including, importantly, water with y,, ~ —107°.
This means, famously, that frogs are also diamagnetic. Superconductors can be thought of as

"perfect” diamagnets with x,, = —1.

e Paramagnetism: x,, > 0. In paramagnets, the magnetisation points in the same direction as the

field. There are a number of paramagnetic metals, including Tungsten, Cesium and Aluminium.

e Ferromagnetism: M # 0 when B = 0. Materials with this property are what you usually call
"magnets”. They're the things stuck to your fridge. The direction of B is from the south pole to
the north. Only a few elements are ferromagnetic. The most familiar is Iron. Nickel and Cobalt

are other examples.
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5.1 Bound Currents

When a material becomes magnetised (at least in an anisotropic way), there will necessarily be regions

in which there is a current. This is called the bound current.

Let’s first give an intuitive picture for where these bound currents appear from. Consider a bunch of
equal magnetic dipoles arranged uniformly on a plane like the left picture : The currents in the interior
region cancel out and we’re left only with a surface current around the edge.  We know that this is
surface current a K. We'll follow this notation and call the surface current arising from a constant,

internal magnetisation Ky gung-

M

Bound surface current
Bound surface and volume current

Figure 5.1: Origin of bound surface and volume current

Now consider instead a situation where the dipoles are arranged on a plane, but have different sizes.
We’ll put the big ones to the left and the small ones to the right, like In this case, the currents in the
interior no longer cancel. As we can see from the right side of the picture picture, they go into the page.
since M is out of the page, and we’ve arranged things so that M varies from left to right, this suggests
that J pouna ~ V x M.

Bound surface and volume currents are
Kbound =M Xxn (53)

and
Jbound =V xM (54)

Note that the bound current is a steady current, in the sense that it obeys V - J younq = 0 .

5.2 Magnetic intensity

Recall that Amp‘ere’s law describes the magnetic field generated by static currents. We’ve now learned
that, in a material, there can be two contributions to a current: the bound current J poung that we've
discussed above, and the current J g from freely flowing electrons that we were implicitly talking.
Amp‘ere’s law does not distinguish between these two currents; the magnetic field receives contributions
from both.

V x B = 1o (J free +J bound )

9.5
= IU‘OJ free + /’LOV x M ( )

jahir.iith@gmail.com http://physicsguide.in/electromagnetic-theory-net/



Sk Jahiruddin ED Notes:  Page 60

We define the Magnetic Intensity or magnetising field, H as

1
H=—B-M (5.6)
Ho
This obeys
VXxH=J fe (5.7)
and in integral form
7{ H-dl=1I (5.8)

We see that the field H plays a similar role to the electric displacement D; the effect of the bound
currents have been absorbed into H, so that only the free currents contribute. Note, however, that we
can’t quite forget about B entirely, since it obeys V - B = 0 . In contrast, we don’t necessarily have
"V -H = 0”. Rather annoyingly, in a number of books H is called the magnetic field and B is called the
magnetic induction. But this is stupid terminology so we won’t use it.

5.2.1 Linear magnetic material

For most of the magnetic material the magnetization vector and magnetic intensity are proportional.
They are called linear magnetic material
M = y,,H (5.9)

The constant of proportionality ., is called the magnetic susceptibility; it is a dimensionless quantity
that varies from one substance to another - positive for paramagnets and negative for diamagnets.

From the definition of H
B=po(H+M) = po(1+x.)H

or
B =uH (5.10)

where
= po (14 xm) (5.11)

1 is called the permeability of the material.

Do some example from Griffiths.

5.3 Electromagnetic Boundary conditions
5.3.1 Magnetostatic Boundary condition inside a medium

Boundary conditions inside the magnetic medium.

B ove — Bisiow = 0 (5.12)

above
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and
HLILbove - H'lrl)elow = Kf X fl (513)
this can also be written as in terms of B
Blyove = Blow = #10(K x 1) (5.14)

5.3.2 Boundary condition in both electric and magnetic field

In the presence of surface charge, the electric field normal to the surface is discontinuous, while the
electric field tangent to the surface is continuous. For magnetic fields, it’s the other way around: in the
presence of a surface current, the magnetic field normal to the surface is continuous while the magnetic

field tangent to the surface is discontinuous.

What happens with dielectrics? Now we have two options of the electric field, E and D, and two
options for the magnetic field, B and H . They can’t both be continuous because they’re related by
D = ¢E and B = yH and we’ll be interested in situation where €( and possibly p) are different on
either side. Nonetheless, we can use the same kind of computations that we saw previously to derive
the boundary conditions. Roughly, we get one boundary condition from each of the Maxwell equations.

The normal component of the electric field The tangential component of the electric field
is discontinuous is continuous.

Figure 5.2: Boundary conditions of electric field

For example, consider the Gaussian pillbox shown in the left-hand figure above. Integrating the
Maxwell equation V - D = pge tells us that the normal component of D is discontinuous in the
presence of surface charge,

n-(D;—Dy) =0 (5.15)
where n is the normal component pointing from 1 into 2. Here o refers only to the free surface charge.
It does not include any bound charges. Similarly, integrating V - B = 0 over the same Gaussian pillbox

tells us that the normal component of the magnetic field is continuous.

f-(By—B)) =0 (5.16)

To determine the tangential components, we integrate the appropriate field around the loop shown
in the right-hand figure above. By Stoke’s theorem, this is going to be equal to the integral of the curl
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of the field over the bounding surface. This tells us what the appropriate field is: it’s whatever appears
in the Maxwell equations with a curl. So if we integrate E around the loop, we get the result

nx (E,—E;)=0 (5.17)
Meanwhile, integrating H around the loop tells us the discontinuity condition for the magnetic field

where K is the surface current.

5.3.3 Example: Field inside the gap

Here is a very interesting problem. A C-magnet is shown in Figure . All dimensions are in cm. The
relative permeability of the soft Fe yoke is 3000 . If a current I = 1 amp is to produce a field of about
100 gauss in the gap, how many turns of wire are required?

L)

i 4{7

D

-— 20

l—© —f N |o— 0 —

7 |-7—1/

Figure 5.3: Magnetic field in the gap

Solution: You must know the boundary condition of the magnetic field. Consider the surfaces
which act like the cross section of the magnet (red colored in the image). The normal component of B
is continuous

BJ_

L _
above Bbelow =0

And there are no parallel component of Magnetic field (remember that in a solenoid the field is along the

axis only). So, the magnetic intensity in the gap is H = l%, while that inside the magnet is H = mi -,

where . is the relative permeability of the iron. Ampere’s circuital law

}{H'dI:NI
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applied to the closed loop passing through inside the magnet and covering the whole magnet

B B
—d + (4l —d)= NI
Ho o oy
hence B )
N=—|d+—{4l—-d ]
/LOI |: /«L7( )

now apply the given data - [ =20 cm = 0.2m , d =2 cm = 0.02 m, and B = 100 gauss = 100 x 1074
Tesla.

B 100 x 10~* 002+0.2x4—0.02
4 x 10T x 1\ 3000
= 161 turns
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6 Changing Electric and Magnetic Field

6.1 Motional emf

When charge moves there acts the Lorenz force on them
F=gqE+q¢vxB (6.1)

The charges move according the force experienced by them. The motion of the charges generates a

current and thus an emf on the medium in which the charges are moving. This is called motional emf.

Lorentz force law is very useful to determine the direction of the induced current. To calculate the

magnitude we need to know the Faraday’s law of induction.

6.2 Faraday’s Law

When the magnetic flux (& = f B - dS) somehow changes in a closed conducting system (be it a closed
loop of wire or something a bend and closed rod) there creates an emf

E=—— (6.2)

The significance of the negative sign is, the induced emf tries to oppose the change of the magnetic flux.

The basic principle the Faraday’s law states is: A changing magnetic field induces an electric
field.

dd 0B
e . l = —— = — —_— .
£ (%E a=- o da (6.3)
This is Faraday’s law, in integral form. We can convert it to differential form by applying Stokes’
theorem: 5B
E=-—— 4
V x T (6.4)

This equation tells us that if you change a magnetic field, you’ll create an electric field. In turn, this
electric field can be used to accelerate charges which, in this context, is usually thought of as creating a

current in wire. The process of creating a current through changing magnetic fields is called induction.

Faraday’s law tells us that if you change the magnetic flux through S then a current will flow. There
are a number of ways to change the magnetic field. You could simply move a bar magnet in the presence
of circuit, passing it through the surface S; or you could replace the bar magnet with some other current
density, restricted to a second wire C’, and move that; or you could keep the second wire C” fixed and

vary the current in it, perhaps turning it on and off. All of these will induce a current in C.

However, there is then a secondary effect. When a current flows in (' it will create its own magnetic
field. This induced magnetic field will always be in the direction that opposes the change. This is called

Lenz’s law. If you like, ”Lenz’s law” is really just the minus sign in Faraday’s law.

jahir.iith@gmail.com http://physicsguide.in/electromagnetic-theory-net/



Sk Jahiruddin ED Notes:  Page 65

Example A metal bar of mass m slides frictionlessly on two parallel conducting rails a distance [
apart (see figure below) . A resistor R is connected across the rails, and a uniform magnetic field B,
pointing into the page, fills the entire region.

i
R 3 I

| v

Figure 6.1: Current created by moving bar in a magnetic field

(a) If the bar moves to the right at speed v, what is the current in the resistor? In what direction
does it flow?

(b) What is the magnetic force on the bar? In what direction?

(c) If the bar starts out with speed vy at time £ = 0, and is left to slide, what is its speed at a later
time ¢ 7

(d) The initial kinetic energy of the bar was, of course, %ng Check that the energy delivered to
the resistor is exactly %mv% .

Solution: (a) & = -4 = —BI% = —Blv;€ = IR = [ = 2 The minus sign tells you the
direction of flow of the current. (v x B) is upward, in the bar, so the current is downward through the
resistor.

_ _ B%%v
(b) F'=IIB = 25, to the left.

: 2,2 » 272 _B?%?
(C)Fzmazmﬁz—BRlv:ﬂz—<ﬂ>v. Hence v = vpe™ mr "

dt Rm

(d) The energy goes into heat in the resistor. The power delivered to resistor is I2R, so

W BRE B, L,
dt R? R
we have taken a = 228 So 4V — qypode2et

The total energy delivered to the resistor is

e 20t | 11

oo
W = amug e 2 dt = amug— = amui— = —mu;

Example: Faraday’s disk generator: A metal disk of radius a rotates with angular velocity w

about a vertical axis, through a uniform field B , pointing up. A circuit is made by connecting one end
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of a resistor to the axle and the other end to a sliding contact, which touches the outer edge of the disk

(See figure). Find the current in the resistor.

AL

(Sliding contact)

I
R
Figure 6.2: Current created by rotating metal disk

Solution: The speed of a point on the disk at a distance s from the axis is v = ws, so the force per
unit charge is f,,; = v X B = wsBs. The emf is therefore

a a B 2
5=/ fmagda’:wB/ sds = woa
0 0 2

So the current is

& wBa@®
R 2R
The flux law or Faraday-Letz rule can also be written as in terms of electric field
dd
E=E -dl=—-—""— 6.5
¢ - (6:5)

Example: A uniform magnetic field B(t), pointing straight up, fills the shaded circular region, made
by conducting material, as shown in the figure below. If B is changing with time, what is the induced
electric field?

B(?)

Amperian loop

Figure 6.3: Induced Current by changing magnetic field
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Solution: E points in the circumferential direction, just like the magnetic field inside a long straight
wire carrying a uniform current density. Draw an Amperian loop of radius s, and apply Faraday’s law:

B o dd d B 9
%E -dl = E(27s) = — ey (rs*B(t)) = —7s -

Hence
sdB -

E=_""—
2dt¢

If B is increasing, E runs clockwise, as viewed from above.

Example: A line charge A is glued onto the rim of a wheel of radius b,. The spokes are made of
some nonconducting material. The wheel is then suspended horizontally, as shown in figure below so
that it is free to rotate. In the central region, which is made by conducting material, out to radius a,
there is a uniform magnetic field Bg, pointing up. Now someone turns the field off. What happens?

By

A>AA

/
b a

Rotation T

A

D V) g

dl
direction

Figure 6.4: Charged disk rotates because of changing B

solution: The changing magnetic field will induce an electric field, curling around the axis of the
wheel. This electric field exerts a force on the charges at the rim, and the wheel starts to turn. According
to Lenz’s law, it will rotate in such a direction that its field tends to restore the upward flux. The motion,

then, is counterclockwise, as viewed from above.

Faraday’s law, applied to the loop at radius b , says

dd ,dB a*dB -
— =-—ma"——-, Oor =———

%E'C”:E(m):_dt_ dt 2 dt

The torque on a segment of length dlis (r x F), or bAE dl. The total torque on the wheel is therefore
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2b dt dt

The angular momentum imparted to the wheel is

2
N =bx <—a—d—B> %dl — a8

0
/th = —)maQb/ dB = M\ta*bB,

Bo

It doesn’t matter how quickly or slowly you turn off the field; the resulting angular velocity of the

wheel is the same.

Now the question is - where is the angular momentum coming from? wait for the next section.
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