- 1. Let $\vec{F_1} = x^2 \hat{z}$ and $\vec{F_2} = x\hat{x} + y\hat{y} + z\hat{z}$. Calculate the divergence and curl of $\vec{F_1}$ and $\vec{F_2}$.
- 2. State and explain Gauss's law. Is it valid for electrodynamics?
- 3. Does $\vec{E} = k[xy\hat{x} + 2yz\hat{y} + 3xz\hat{z}]$ represent an electrostatic field? Explain.
- 4. State and discuss Biot-Savart Law.
- 5. Given an Electric field $\vec{E} = \mu [xy\hat{i} + 2yz\hat{j} + 3xz\hat{k}]$, calculate the charge density at the point (1, 1, 1).
- 6. Draw the equipotential surfaces for a system of two positive charges of equal magnitude separated at a distance d.
- 7. Calculate the net dipole moment of a charge distribution consists of three charges q_1 , q_2 and q_3 placed at the vertices of an equilateral triangle of arm length a.
- 8. Calculate the work done by a magnetic force in translating an electric charge of strength q from point A to B.
- 9. Derive the form of Gauss's law inside a dielectric medium. What are the characteristics of linear dielectrics?
- 10. Physically interpret bound surface charge density (σ_b) and volume charge density (ρ_b) .
- 11. Define displacement current. What is the physical interpretation of displacement current?
- 12. Write Lorentz force law. Hence calculate the force per unit length between two parallel wires at a distance d apart, carrying I_1 and I_2 amount of currents respectively. Note that currents are flowing in opposite direction in two wires.
- 13. Define self inductance of a circuit. Find out the dimension of inductance.
- 14. Explain the significance of Maxwell's second law : $\vec{\nabla}.\vec{B} = 0$. How does it help to define vector potential?
- 15. Calculate the impedance of an LC. circuit.

- 16. Why series LCR circuit is called filter circuit?
- 17. State Ampere's circuital law.
- 18. Using Ampere's law calculate the magnetic field of a very long solenoid, consisting of n closely wound turns per unit length on a cylinder of radius R and carrying steady current I. Clearly explain existence or non-existence of different components of magnetic field.
- 19. A current distribution gives rise to the magnetic vector potential $\vec{A}(x, y, z) = A_0(x^2y\hat{x} + y^2x\hat{y} + xyz\hat{z})$. Find the corresponding magnetic field \vec{B} at (-1, 2, 5). Use Ampere's law to calculate current density \vec{J} at the same point.