UG SEM III INTERNAL EXAMINATION 2021 RAIGANJ SURENDRANATH MAHAVIDYALAYA SUBJECT- MATHEMATICS COURSE- DC-06 (LINEAR ALGEBRA) TIME – 1 HR. F.M-18

GROUP-A (8 MARKS)

Answer all the Questions:(2×4=8)

- 1. A matrix M has Eigen values 1 & 4 with corresponding Eigen vectors $(1, -1)^t$ and $(2, 1)^t$ respectively. Then find the matrix M.
- 2. Find the rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (y, 0, z).
- 3. Let V be the set of all 3×3 real matrices such that $A = (a_{ij})$ with $a_{11} + a_{22} + a_{33} = 0$. *Find dimV*.
- 4. Consider the set of vectors $S_{1} = \{ (3,0,4), (-4,0,3), (0,9,0) \} \text{ and}$ $S_{2} = \left\{ \left(\frac{3}{5}, 0, \frac{4}{5} \right), \left(-\frac{4}{5}, 0, \frac{3}{5} \right), (0,1,0) \right\}.$

Examine if S_1 is orthogonal & S_2 is orthonormal.

GROUP-B (10 MARKS)

Answer all the Questions :(5×2=10)

5. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation such that T(1,2,-1) = (2,4,-2), T(-1,0,2) = (3,0,-6)and T(1,1,0) = (0,0,0).

Find the Eigen values of the matrix of T with respect to the ordered basis { (1,2,-1), (-1,0,2), (1,1,0) }

6. Use Gram-Schmidt process to obtain an orthogonal basis from the basis set $\{(1,1,0), (0,1,1), (1,0,1)\}$ of the Euclidean space \mathbb{R}^3 with standard inner product.