2020

MATHEMATICS (Honours)

Paper Code : V - A & B (New Syllabus)

Full Marks: 100 Time: Four Hours

Important Instructions for Multiple Choice Question (MCQ)

• Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example: Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : III A & B

Subject Name :

• Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.

Example — If alternative A of 1 is correct, then write :

1. – A

• There is no negative marking for wrong answer.

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

উত্তরপত্রে নির্দেশিত স্থানে বিষয়ের (Subject) নাম এবং কোড, রেজিস্ট্রেশন নম্বর, সেশন এবং রোল নম্বর লিখতে হবে।

উদাহরণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)।

Subject Code : III A & B

Subject Name :

• পরীক্ষার্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষে (A) / (B) / (C) / (D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।

উদাহরণ — যদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে :

1. - A

ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Paper Code: V - A

Full Marks : 20 Time : Thirty Minutes

Choose the correct answer. Each question carries 2 marks.

1. Let $f:[0,1] \to \mathbb{R}$ be such that

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{1}{n}, n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Then the value of $\int_0^1 f(x)dx$

- (A) is -1
- (B) is 1
- (C) is 0
- (D) does not exist
- 2. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is
 - (A) 1
 - (B) 0
 - (C) $\frac{1}{2}$
 - (D) ∞
- 3. Define $f:[0,2] \longrightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \neq 1 \end{cases}$$

and define $g:[0,1] \longrightarrow \mathbb{R}$ by

$$g(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Then

- (A) both f, g are Riemann integrable
- (B) f is Riemann integrable but g is not Riemann integrable
- (C) g is Riemann integrable but f is not Riemann integrable
- (D) None of these

4. Let $x; y \in \mathbb{R}$ and define

$$d_1(x,y) = (x-y)^2$$
 and $d_2(x,y) = |x^2 - y^2|$

Then

- (A) both d_1 and d_2 are metric
- (B) d_1 is a metric but d_2 is not a metric
- (C) d_1 is not a metric but d_2 is a metric
- (D) neither d_1 and d_2 is a metric

5. If f(z) = u + iv in polar form is analytic then $\frac{\partial u}{\partial r}$ is

- (A) $\frac{\partial v}{\partial \theta}$
- (B) $r \frac{\partial v}{\partial \theta}$
- (C) $\frac{1}{r} \frac{\partial v}{\partial \theta}$
- (D) $-\frac{\partial v}{\partial \theta}$

6. If A is an open set and B is a closed set in a metric space (X; d), then

- (A) $A \setminus B$ is open and $B \setminus A$ is closed
- (B) $A \setminus B$ is closed and $B \setminus A$ is open
- (C) $A \setminus B$ is open and $B \setminus A$ is open
- (D) $A \setminus B$ is closed and $B \setminus A$ is closed.

7. If $I_n = \left(-\frac{n}{n+1}, \frac{n}{n+1}\right)$, for n = 1, 2, 3, ... then $\bigcap_{n=1}^{\infty} \left(-\frac{n}{n+1}, \frac{n}{n+1}\right)$ equal to

- (A) (-1, 1)
- (B) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
- $(C) \left(-\frac{1}{2}, \frac{1}{2}\right)$
- (D) {0}

Turn Over

- 8. $\lim_{x \to 0} \frac{x}{1 e^{x^2}} \int_0^x e^{t^2} dt$
 - (A) = 0
 - (B) = 1
 - (C) = -1
 - (D) does not exist
- 9. The maximum of $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$ is
 - (A) 0
 - **(B)** 1
 - (C) 2
 - (D) 3
- 10. The value of the integral $\iint_R xy(x+y)dxdy$, where $R = [0, 1] \times [0,1]$, is
 - (A) 3
 - (B) $\frac{1}{3}$
 - (C) 0
 - (D) 1

2020

MATHEMATICS (Honours)

Paper Code : V-B

(New Syllabus)

Full Marks: 80

Time: Three Hours Thirty Minutes

The figures in the margin indicate full marks.

Notations and symbols have their usual meanings.

Group - A

(50 Marks)

Answer any five questions:

 $10 \times 5 = 50$

- 1. (a) Define a compact set. Show that a compact subset of real numbers must be closed and bounded.
 - (b) Prove that the function $f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx^2)}{1+n^3}$, $x \in \mathbb{R}$ is continuously differentiable on \mathbb{R} .
- 2. (a) Find the points on the circle $x^2 + y^2 = 80$ which are closest to and farthest from the point (1,2).
 - (b) Show that the sequence $\{f_n\}$ of functions, where $f_n(x) = nxe^{-nx^2}$ is pointwise convergent but not uniformly convergent on $[0,\infty)$.
- 3. (a) Show that a necessary and sufficient condition for a bounded real valued function f to be Riemann integrable on [a,b] is that for each $\varepsilon > 0$, $\exists \ \delta > 0$ such that $0 \le U(P,f) L(P,f) < \varepsilon$ for every partition P with $\parallel P \parallel < \delta$. [6]
 - (b) Show that $\left| \int_{p}^{q} \frac{\sin x}{x} dx \right| \le \frac{2}{p}$, if q > p > 0. [4]
- 4. (a) Show that the improper integral $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is not absolutely convergent. [5]
 - (b) By changing the order of integration prove that

$$\int_{0}^{1} dx \int_{0}^{\frac{1}{x}} \frac{y^{2} dy}{(x+y)^{2} \sqrt{1+y^{2}}} = \frac{1}{2} (2\sqrt{2} - 1).$$

[5]

5. State and prove the Cantor's intersection theorem. Illustrate the theorem with an example. [2+6+2]

Turn Over

6. (a) Using differentiation under the sign of integral show that

$$\int_{0}^{\pi} \frac{\log(1 + a\cos x)}{\cos x} dx = \pi \sin^{-1} a,$$

for
$$|a| < 1$$
. [5]

- (b) State and prove Taylor's theorem for the function of two variables. [1+4]
- 7. (a) Test the convergence of beta and gamma functions. [3+4]

(b) If
$$\int_{1}^{e} \frac{dt}{t} = 1$$
, then show that $2 < e < 3$. [3]

- 8. (a) Evaluate $\iint_R f(x,y) dx dy$ over the rectangle $R = [0,1] \times [0,1]$ where f(x,y) = x + y if $x^2 < y < 2x^2$ and f(x,y) = 0 elsewhere. [5]
 - (b) If a series $\sum f_n$ converges uniformly to f on [a,b] and each term f_n is integrable on [a,b], then show that f is integrable on [a,b]. [5]

Group-B (15 Marks)

9. Answer any three questions.

 $5 \times 3 = 15$

- (a) Show that every metric space is a Hausdorff space.
- (b) Let (X, d) be any metric space, then show that the function d_1 defined by $d_1(x, y) = \frac{d(x,y)}{1+d(x,y)}$, $\forall x, y \in X$ is a metric on X.
- (c) Show that C[a, b] is a separable metric space under 'sup' metric.
- (d) For points x, y, a, b in a metric space (X, d), show that $|d(x, y) d(a, b)| \le d(x, a) + d(y, b)$.
- (e) Let (X, d) be a metric space and $A \subseteq X$. Prove that Int(A) is the largest open set contained in A.

Group-C (15 Marks)

10. Answer any three questions.

 $5 \times 3 = 15$

(a) Prove that the function $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, when $z = x+iy \neq 0$ and f(0) = 0 is continuous.

Turn Over

- (b) Let f(z) = u(x, y) + iv(x, y), z = x + iy and $z_0 = x_0 + iy_0$. Let the function f(z) be defined in a domain D except possibly at the point z_0 in D. Then prove that $\lim_{z \to z_0} f(z) = w_0 = u_0 + iv_0$ if and only if $\lim_{z \to z_0} u(x, y) = u_0$ and $\lim_{z \to z_0} v(x, y) = v_0$.
- (c) Show that the function $u = x^3 3xy^2$ is harmonic and also find the corresponding analytic function.
- (d) Show that the real and imaginary parts of an analytic function satisfy Laplace's equation.
- (e) Show that the function f = u + iv where $u = x^2 + y^2$ and v = xy is nowhere analytic.

(8)