$$
\begin{gathered}
\text { PHYSICS (Honours) } \\
\text { Paper - XI (Practical - Electronics) - } 2020
\end{gathered}
$$

Full Marks: 65
Time: Six Hours

Group - A

Answer any one question (Marks- 40)

Upload the graph with results and calculations.

1. Draw the I-V Characteristic of a P-N junction diode from the given data, draw the load line for the resistance $R L=50 \Omega$ and hence find the Q -point.

Voltage in Volt	Current in mA
0.1	0
0.2	0.2
0.3	1
0.4	2
0.5	2.8
0.6	4.5
0.7	6.8
0.8	9
0.9	11.4
1	13
1.1	15.8
1.2	18
1.3	20.6
1.4	22.5
1.5	25.6
1.6	27.9
1.7	31.4
1.8	35
1.9	38.7
2	42.1
2.1	45.6
2.2	50
2.3	54.5
2.4	59.4
2.5	65.5

2. Draw the output characteristic curves of a transistor in the CE mode from the given data and determine the value of Current gain (β).

$\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$		$\mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{CE}}$ in Volt	I_{C} in mA	V_{CE} in Volt	I_{C} in mA
0	0	0	0
0.1	1.7	0.07	1.3
0.15	2.1	0.1	2.1
0.2	2.2	0.15	2.8
0.25	2.3	0.2	2.9
0.35	2.4	0.25	3
0.45	2.4	0.35	3
0.55	2.4	0.45	3
0.65	2.4	0.6	3
0.75	2.4	0.7	3
0.9	2.4	0.8	3
1	2.4	0.9	3
1.15	2.4	1.05	3
1.2	2.4	1.1	3
1.3	2.4	1.2	3
1.4	2.4	1.35	3
1.45	2.4	1.4	3
1.5	2.4	1.5	3

3. Draw the frequency response curve [Gain in $d B$ vs $\log (f)$] of a CE amplifier from the given data and hence calculate Band - Width of the amplifier.

Input Voltage $\left(\mathrm{V}_{\mathrm{i}}\right)=30 \mathrm{mV}$

$\begin{aligned} & \text { Frequency(f) } \\ & \text { in } \mathrm{Hz} \end{aligned}$	Output Voltage(Vo) in Volt
10	0.74
20	1.38
30	1.8
40	2.15
50	2.32
60	2.52
70	2.6
80	2.66
90	2.7
100	2.76
200	2.9
300	2.93
400	2.96
500	3
600	3
700	3.01
800	3
900	3
1000	3
2000	3
3000	3
4000	3
5000	3
6000	3
7000	2.98
8000	2.96
9000	2.95
10000	2.9
20000	2.55
30000	2.3
40000	2.1
50000	1.9

Group - B
 Answer any five questions

$$
5 \times 5=25
$$

1. Can you identify the material of the diode (Ge or Si) by just looking at the V-I characteristic curve, explain.
2. What are the different configurations (mode) of a transistor? Which configuration will you prefer to construct a buffer amplifier?
3. What is DC current gain of a transistor in CB mode?
4. What is Common Mode Rejection Ratio of an OPAMP?
5. What is an ideal voltage source?
6. How does a transistor act as a switch?
7. Find the expression of output (Y).

