2020

MATHEMATICS (Honours)

Paper Code: MTMH-H- DC04

[CBCS]

Full Marks: 18

Time: 1hr

Notations and symbols have their usual meanings. Part-A.

> Answer all the questions. Each question carries 2 marks

1. In a group (G, \circ) , 'a' is an element of order 30. Find the order of a^{18} .

2. Let D be an integral domain and $a, b \in D$. If $a^5 = b^5$ and $a^8 = b^8$, then prove that a = b.

3. Prove that the polynomial $f(x) = x^3 + x + 1$ is irreducible over Z_2 , where Z stands for set of all integer.

Part-B.

Answer any three questions. Each question carries 4 marks

4. If H be any sub group of a group G, then prove that H is normal in G iff $aHa^{-1} = H$ for all a in G.

5. If R be a commutative ring with unity, then prove that R is an integral domain iff for every non-zero element b in R, $b.p = b.q \Rightarrow p = q$, where $p, q \in R$.

6. Let (G, \circ) be a group and $a, b \in G$. If o(a) = 3 and $a \circ b \circ a^{-1} = b^2$, then find o(b) if $b \neq \text{identity element}$.

7. Prove that an ideal U of a ring R is maximal iff the quotient ring R/U is simple.